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Abstract. Global Navigation Satellite System (GNSS) Polarimetric Radio-Occultation (PRO) observations sense the presence

of hydrometeor particles along the ray path by measuring the difference of excess phases in horizontally and vertically po-

larised carrier waves. As a first step towards using these observations in data assimilation and model diagnostics, a forward

operator for GNSS-PRO observable ΦDP (polarimetric differential phase shift) has been implemented by extending the existing

two-dimensional forward operator for radio-occultation bending angle observations. Evaluation on heavy precipitation cases5

showed that the implemented forward operator can simulate very accurately the observed ΦDP in synoptic-scale atmospheric

river (AR) cases. For tropical cyclone cases it is more challenging to produce reasonable ΦDP simulations, due to the highly

sensitive of ΦDP with respect to displacement of the position of the tropical cyclones. It was also found that snow is the domi-

nant contributor to the simulated ΦDP, and that the ability to compute the ray paths in two dimensions is essential to accurately

simulate ΦDP.10

1 Introduction

The speed of light is slowed down when radio waves pass through the air, and this “retardation” is larger when the air is

heavier and more humid. Because of this, as radio waves travel through stratified atmosphere from an emitter on a Global

Navigation Satellite System (GNSS) satellite to a receiver onboard a lower-Earth orbit (LEO) satellite, they undergo bending (or

refraction) to minimise the travel time along the ray. In Radio-Occultation (GNSS-RO) observations, this bending is retrieved15

from continuous measurement of the phase of the radio waves. As the refraction depends on the density of dry air and the

amount of water vapour, measurements of bending can inform us about the thermodynamic properties of the atmosphere

along the ray paths. GNSS-RO observations are routinely assimilated at most major NWP centres and are recognised as an

indispensable component of modern NWP systems (e.g., Bonavita, 2014).

The carrier waves employed in GNSS are circularly polarised to minimise the impact of receivers’ antenna alignment on20

the accuracy and stability of positioning. Because the carrier waves are polarised, it should be possible, in principle, to obtain

information on properties of hydrometeors along the rays, just like polarimetric phase-shift measurement from dual-polarised

weather radars (e.g., Kumjian, 2013). Polarimetric radar observations exploit the fact that, when polarised radio waves travel

through oblate objects like large rain droplets, the phase is delayed more in the horizontally polarised waves than in their verti-

cally polarised counterpart due to the directionally differential cross-section of the oblate objects. Hence, if a large difference25
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between horizontal and vertical phase shifts is observed, that indicates the presence of more and/or larger hydrometeors (and

thus, heavier precipitation) along the ray. This same principle should also hold for GNSS carrier waves to allow for inference

of properties of hydrometeors from GNSS-RO observations if the horizontally and vertically polarised components of the radio

waves can be processed separately. An additional benefit of using GNSS carrier waves, in comparison to X-band to S-band as

in most weather radars, is that the relatively low frequencies in the L-band range may make the measurement more sensitive to30

larger hydrometeors while being insensitive to smaller particles like aerosols and non-precipitating cloud droplets.

Such polarimetric measurement of GNSS-RO observations, which we shall call PRO hereafter, has not been explored until

recently but was enabled by the sensor deployed for Radio Occultation and Heavy Precipitation (ROHP) mission onboard

Spanish PAZ satellite (Cardellach et al., 2019). The PAZ satellite was successfully launched in May 2018 and has already

been producing PRO measurements for more than 4 years (as of April 2023) with the observed cases including many heavy35

precipitation events.

The promise of PRO measurements is already established by recent studies. Cardellach et al. (2019) confirmed, with real

data, that PRO measurements exhibit stronger signals in the presence of heavier precipitation. Turk et al. (2021) and Padullés

et al. (2021) simulated PRO measurements using hydrometeor retrieval products from collocated Global Precipitation Measure-

ment (GPM) measurements and their results suggested that PRO measurements do contain useful information about vertical40

structure of deep convective clouds.

An important benefit that is unique to PRO observations is that, because the regular RO (or bending) measurement and the

newly available PRO measurement are carried out simultaneously, profiles of thermodynamic and cloud-related properties can

be observed at the same time. Hence, if an accurate observation operator is available that can simulate PRO measurements

from state variables of a NWP model, PRO observations can potentially be of great diagnostic value to modelling of physical45

processes.

As a first step towards PRO assimilation and model validation with PRO measurements, we develop an off-line forward oper-

ator of PRO measurement for the European Centre for Medium-Range Weather Forecasts (ECMWF)’s Integrated Forecasting

System (IFS) model.

The paper is structured as follows. Section 2 describes the specification and the main components of the forward operator,50

clearly presenting the assumptions we made and their potential limitations. Section 3 describes the data and the model used in

this study along with the cases examined. Section 4 presents the results including those from several sensitivity experiments,

followed by discussion and conclusions in section 5.

2 Description of the forward operator

The main observable of GNSS-PRO is the differential phase shift ΦDP = ΦH−ΦV which is the additional excess of the phase55

delay of the horizontal wave ΦH in comparison to that of the vertical wave ΦV . This can be computed as the integration along
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the ray path, s, of the specific differential phase shift KDP:

ΦDP =

LEO∫

GNSS

KDP(s)ds (1)

where GNSS and LEO symbolically represent, respectively the position of the transmitter and receiver of GNSS radio signals.

KDP indicates how much the phase of the horizontally polarised wave is delayed in comparison to that of the vertically60

polarised wave as they travel a unit distance. A positive value of KDP is an indication of the presence of hydrometeors in the

air.

The main components to computing Eq. (1) are determination of the ray path, and estimation of KDP from hydrometeors

represented in the model. In IFS, hydrometeors from parametrised convection are represented as their vertical mass fluxes and

thus we need to convert convective mass fluxes to mixing ratio in order to relate them to KDP (see section 2.3).65

2.1 Ray-tracing

We develop the PRO forward operator by extending the operational two-dimensional (2D) forward operator for RO bending

angle (Healy et al., 2007). The bending angle, α, computed by this 2D forward operator, can be symbolically written as

α =

LEO∫

GNSS

(
dα

ds

)
ds (2)

with the ray path being identical to the one in Eq.(1). To compute the PRO observable ΦDP, we exploit the analogy between70

Eq.(1) and Eq.(2) and use the existing code from the operational 2D bending angle operator to compute the ray path and to

integrate the integrands.

The ray-tracing follows “Approach 2” of Healy et al. (2007) which is described in detail in their Section 3.2. For each ΦDP

measurement, the latitude, longitude and the height of the tangent point, and the azimuth angle of the ray is taken from the

observed data. The forward operator then makes a 2D slice of the three-dimensional model field in the direction of the azimuth75

angle centred around the tangent point. The slice comprises vertical columns, each at model’s native vertical full level, of

equally-spaced locations along the occultation plane. Angular distance of two adjacent columns is set so that their horizontal

distance is approximately equal to the typical horizontal grid spacing of the input grid and the number of vertical columns

in the slice is chosen so that the slice horizontally spans ∼1200 km. When the input model field is on 0.25°×0.25° regular

lat-lon grid, for example, the forward operator first computes the latitudes and longitudes of 31 points equally spaced with80

∆θ = 40/6371 radians (corresponding to 40 km physical distance at the Earth’s surface) along the great circle centred around

the tangent-point’s horizontal position and with the azimuth angle specified by the observed data, and horizontally interpolates

the model fields to these horizontal points to construct the 2D slice. Similarly, when the input model field is on 0.125°×0.125°

regular lat-lon grid, the angular spacing is set as ∆θ = 20/6371 radians and the slice will contain 61 columns. In this study,

for ease of implementation, the horizontal interpolation is done by nearest-grid search.85

Once the 2D slice is set up, the forward operator computes the ray-path starting from the tangent point by integrating the ray

equations in both directions (towards the receiver onboard LEO satellite and towards the transmitter onboard GNSS satellite).
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The numerical integration of the ray equations is based on the second-order Runge-Kutta method 1. The KDP contributions

from each type of hydrometeors (see next section) are integrated as each section of the ray is traced, and the accumulated KDP

from each section is finally summed up to obtain the total ΦDP. The detail of ray tracing is described in Healy et al. (2007).90

Vertical interpolation for KDP is performed column-wise. To avoid negative values, we employ a simple linear interpolation in

the vertical. Unlike refractivity, exponential decay with height is not assumed for KDP.

During an occultation event, the horizontal position of the tangent point drifts as the ray ascends or descends. While the

operational 2D operator for bending angle accounts for such “tangent-point drift” (c.f., section 4.3) since 2011, Healy et al.

(2007) found that the effect of tangent-point drift is not crucial for the regular RO observations of bending angle, presumably95

due to the weak horizontal gradient of the atmospheric refractivity. We found, from PAZ data, that in a single occultation event,

the tangent point typically drifts∼ 100 km. This can be tolerated for bending angle, but it is not clear if the same can be said for

KDP because it is sensitive to hydrometeors and their horizontal variability is much larger than that of thermodynamic fields.

We examine this aspect in section 4.

We remark that the ray-tracing implemented in our 2D operator relies on the position of tangent points and the impact100

parameter provided from the RO data processing centres, but the tangent point position can only be determined after ray-

tracing has been done. In this sense, our ray-tracing is dependent on externally performed estimation of the ray path. The

accuracy of this tangent point estimation may impact the performance of our ray-tracing.

2.2 Relating hydrometeor water content to KDP

Specific differential phase shift, KDP, is induced by the difference in scattering properties of hydrometeor particles for the105

horizontally and vertically polarised waves. A “first-principle” scattering calculation of KDP from NWP variables would

require assumptions about details of cloud microphysics and precipitation that are not currently represented in the forecast

model. In IFS, the only prognostic variables related to hydrometeors are their water content (or vertical mass-flux; see next

subsection), so KDP needs to estimated from the water content variables from each type of hydrometeors.

In IFS, hydrometeors represented with the resolved (or large-scale) microphysics scheme can be categorised into the fol-110

lowing four different kinds: non-precipitating liquid water, non-precipitating ice water, precipitating liquid water (or rain), and

precipitating ice water (or snow). We denote the water content of these categories, respectively, by LWC, IWC, RWC and

SWC. In addition to these resolved-scale variables, the deep convection parametrisation scheme also represents precipitating

rain and snow separately. We denote the rain water content and snow water content that are attributable to the deep convection

scheme, respectively, by RWCconv and SWCconv.115

To determine KDP from the water content of each category of hydrometeor, here we adopt a simple linear relation between

the water content and KDP contribution. For ice (i.e., IWC, SWC and SWCconv), following Padullés et al. (2021), we adopt

the following water-content-to-KDP formula (which, in turn is taken from Bringi and Chandrasekar (2001)):

KDP(WC) =
1
2
Cρ×WC× (1− ar) (3)

1Healy et al. (2007) used the fourth-order Runge-Kutta method but the operator was later simplified to adopt the second-order method.
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where WC means any of IWC, SWC and SWCconv, in units of g m−3, KDP(WC), in units of mm km−1, denotes the KDP120

contribution from the hydrometeor whose water content is denoted WC, ρ is the particle density in units of g cm−3, and ar

(non-dimensional) is the assumed axis ratio of the ice particles. C is a proportionality constant which is derived from theory of

scattering by spheroid objects which is set as C = 1.6
(
g cm−3

)−2
in this study. For ar and ρ, we assume them to be constant

and arbitrarily chose their values as ar = 0.5 and ρ = 0.2 g cm−3.

The main approximating assumptions behind the formula relating KDP to water content, Eq. (3), are (1) particles are125

spheroid, (2) particles are small enough in comparison to the wavelength so that Rayleigh scattering dominates, and (3) ar

and ρ are independent of the particle size (see the derivation in Chapter 7 of Bringi and Chandrasekar, 2001). Compared with

findings from weather radar community, the assumptions (1) and (2) may seem too crude for ice particles, but as we show

later, the simulated ΦDP are quite consistent with the observations. We revisit this point in section 5.1. The assumption (3) is

admittedly difficult to justify and we consider this to be an important limitation of our approach (see section 5.3).130

We note that the orientation of the ice/snow particles are situation dependent and hence the axis ratio ar would better be

allowed to vary. For example, Padullés et al. (2021), when simulating ΦDP using the ice water content retrieved from Global

Precipitation Mission (GPM) Microwave Imager (GMI) observations, allowed ar to vertically vary from 1 near the cloud

top to 0 below −10 C°level and further modified it depending on the polarisation difference (PD) of the observed brightness

temperature measured by GMI. Similarly, the particle density ρ should be different depending on the particle size and shape. In135

our study, however, for simplicity, and due to lack of knowledge about particle orientation and details of particle shape, these

effects are not accounted for.

The formula for liquid water (LWC, RWC and RWCconv) should be different from Eq. (3), but here, we use Eq. (3) for LWC,

RWC and RWCconv as well. We are aware of the imperfection of this approach and aware that at least the coefficients should

be refined. As we discuss in section 4, however, the ΦDP contributions from liquid water are found not to be so dominant.140

Hence, small changes in tuning these parameters for liquid water will not change the main signals.

2.3 Converting mass flux to water content

In IFS, the amount of hydrometeor is represented (and archived) differently for the resolved (large-scale) scheme and for the

parametrised convection scheme. In the resolved microphysics, LWC, IWC, RWC and SWC are directly available as specific

water content (in units of kg/kg), which can be readily converted to mass per volume (in units of g m−3). In the convective145

scheme, however, the amount of hyrdometeor (RWCconv and SWCconv) are represented only as their vertical mass fluxes (in

units of kg m−2 s−1). To convert them into water content mass per volume, some additional assumptions have to be made.

Here we follow the approach adopted in RTTOV-SCATT, described in Appendix B of Geer et al. (2007). In this approach,

we assume that the particle density ρ is constant, the fall speed of a particle of diameter D is proportional to Dβ for some

β and the particle size distribution follows an exponential decay. With these assumptions, one can show (A. Geer, personal150

communication), with calculus involving Gamma function, that the water content WC, in units of g m−3, can be derived from

the vertical mass flux FL as {FL/(aρ)}1/b with the parameters a,b and ρ given in Table 8 of Geer et al. (2007).
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3 Model and data

3.1 Forecast model fields

The forecast data used to simulate ΦDP are produced by running the version Cy47R3 of the IFS model at Tco1279 horizontal155

resolution (approximately 9 km of grid spacing) with 137 vertical model levels initialised from the operational analysis fields

valid at the time closest to the start time of the occultation event simulated. This configuration is essentially identical to the

operational deterministic forecast. The model fields defined on the model’s native Tco1279 Octahedral Gaussian grid are

interpolated to regular 0.125°×0.125° lat-lon grid by ECMWF’s MARS system before being ingested to the forward operator.

The model fields are available at hourly interval in time. The forecast fields at two adjacent time steps are ingested to the160

forward operator, which are then linearly interpolated to the start time of the occultation event. The mass flux variables are

archived as time accumulation from the beginning of the forecast integration; for these variables, we take the difference of

forecast fields at two adjacent time steps that contain the time of occultation event, and divide the difference by 3600 s as if it

is an instantaneous value, assuming that their values are constant over the one-hour time interval.

3.2 Observations165

We use the version V06 of PAZ Level-1B data processed and calibrated at the Spanish Institute of Space Sciences ICE-

CSIC/IEEC (Cardellach et al., 2019). In this dataset, data for each occultation event are provided in a separate netCDF file

containing time series of the calibrated ΦDP and the tangent point height along with other relevant data and metadata that

includes the azimuth angle at the “occultation point” (i.e., the point at which the excess phase first becomes greater than 500

m). To simulate ΦDP with our forward operator we additionally need information on the latitude and longitude of the tangent170

point. These data are not included in the PAZ dataset, so we extracted them from the corresponding UCAR-processed level-2

data.

The ΦDP data measured from PAZ is known to undergo height-dependent systematic errors and the PAZ dataset provides

ΦDP data calibrated with two different approaches, one based on antenna pattern and the other based on linear regression. In

this study we used the ΦDP profile with antenna pattern calibration (denoted with the variable name dphase_cal_ant in175

the netCDF files) which was shown in Padullés et al. (2020) to be more accurate than the linear-regression-based calibration.

3.3 Examined cases

Using the forecast model and the observed data described above, ΦDP profiles are simulated from the model and compared

with the observations for five atmospheric river (AR) cases and six tropical cyclone (TC) cases. These cases, which all exhibit

large ΦDP signals in the PAZ observations and are accompanied with heavy precipitation, were selected by Dr. Ramon Padullés180

for a multi-center model intercomparison project of ΦDP simulated from NWP output fields. Summary of the cases are given

in Table 1 and Table 2.
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RO ID time (UTC) latitude longitude

PAZ1.2020.355.18.18.G25 2020-12-20 18:17:52 51.36° N 172.30° W

PAZ1.2020.356.05.00.G13 2020-12-21 04:59:51 44.66° N 165.31° W

PAZ1.2021.014.15.53.G12 2021-01-14 15:52:44 45.60° N 137.33° W

PAZ1.2021.009.02.43.G02 2021-01-09 02:43:09 48.83° N 139.04° W

PAZ1.2021.010.03.58.G13 2021-01-10 03:58:06 38.69° N 154.95° W
Table 1. List of the examined Atmospheric River (AR) cases (provided by Dr. Ramon Padullés). RO ID is an identification code given

following the UCAR convention for each occultation event; time (UTC) is the time at which the occultation begins; latitude and longitude

are those of the “occultation point” where the excess phase exceeds 500 m for the first time during the occultation event.

RO ID time (UTC) latitude longitude TC name

PAZ1.2018.143.03.04.G16 2018-05-23 03:03:48 14.50° N 55.87° E Mekunu

PAZ1.2019.303.09.35.G16 2019-10-30 09:35:10 14.37° N 109.30° E Matmo

PAZ1.2021.249.20.34.G29 2021-09-06 20:33:55 23.56° N 54.64° W Larry

PAZ1.2019.296.21.41.G14 2019-10-23 21:41:19 26.34° N 141.57° E Bualoi

PAZ1.2021.285.23.27.G04 2021-10-12 23:27:16 18.84° N 112.65° E Kompasu

PAZ1.2018.276.21.09.G25 2018-10-03 21:09:47 28.09° N 57.61° W Leslie
Table 2. As in Table 1 but for Tropical Cyclone (TC) cases, with an additional column for the TC names.

4 Results

4.1 Baseline results

We first examine the overall agreement of the simulated and observed ΦDP profiles, and the relative contributions from different185

categories of hydrometeors. The simulated and observed ΦDP for AR and TC cases, plotted as vertical profiles against the

tangent height, are shown in Figure 1. To use the best possible simulation as the baseline, in these plots the tangent-point drift

is fully accounted for (i.e., we use the correct tangent point position at each tangent height).

For the AR cases (Figure 1, top two rows), simulated ΦDP profiles fit very well to the observed profiles. Considering all the

uncertain assumptions that are made in linking hydrometeor water content to KDP (section 2.2), this level of agreement is quite190

surprising. From Figure 1 we can also observe that simulated ΦDP is dominated by contributions from resolved-scale snow

(SWC; yellow solid lines). Because of the uncertainty in how we estimate KDP from hydrometeor water content (section 2.2),

we cannot assert that SWC contribution dominates solely by judging from their dominance in magnitude. However, the shape

of the profile of SWC contribution closely resembles that of the observed ΦDP profile for any of the five cases, which should

mean that ΦDP is predominantly determined by resolved-scale snow. In contrast, for the TC cases (Figure 1, bottom two rows),195

the simulated and observed ΦDP do not agree well, with the former significantly overestimating the latter. We investigate why

the simulation results are so drastically different in AR and TC cases in the rest of this section.
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Figure 1. Comparison of the observed (blue) and simulated total (purple) ΦDP profiles for the AR cases (top two rows) and the TC cases

(bottom two rows). ΦDP contributions from resolved-scale non-precipitating ice (IWC) and liquid (LWC), resolved-scale precipitating rain

(RWC) and snow (SWC), and convective scheme rain (RWCconv) and snow (SWCconv) are also shown with different colours depicted in

the legend.
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4.2 Sensitivity to model-field displacement

We have seen that the simulated ΦDP agrees well for AR cases but not so much for TC cases. One factor that may explain

this sharp contrast is the spatial scale of the phenomena: the horizontal scales of TCs are typically much smaller than those200

of synoptic disturbances like AR, so that even a small positional error in the model fields may have significant impact on

simulated ΦDP in the TC cases while these may be tolerated in the AR cases. Estimates of the uncertainty in simulated ΦDP

that can be attributed to displacement of model fields are plotted in Figure 2. Here, we took a simple approach and estimated

the uncertainty by shifting the latitude and longitude of the tangent points by ±0.1o (which correspond to shifts in position by

∼ 10 km, namely, roughly by one grid point) or 0°, resulting in 9 profiles computed for each event in total. We assume that the205

spread among such profiles would represent the range of uncertainty that we would have if the forecast had displacement error

on the order of one grid point.

Figure 2 shows that the simulated ΦDP are insensitive to the forecast displacement in the AR cases but are more sensitive

in the TC cases. This high sensitivity to the displacement error can explain the poorer fit between the simulated and observed

ΦDP, albeit not the systematic overestimation in the TC cases.210

4.3 Impact of tangent-point drift

The results shown so far have been computed by fully taking into account the effect of tangent-point drift (i.e., by changing the

horizontal position of the tangent point for each tangent-point height). In practice, this can be prohibitively expensive because,

each time the tangent point position changes, the 2D slice has to be re-generated. It is thus desirable to reduce the frequency of

tangent-point position update to minimise the number of 2D slices to be created as long as the accuracy is not too degraded.215

Here, in addition to the “full drift” approach shown above, we explored two more approaches: “no drift”, in which the drift

of tangent point is not accounted for, and “11-batch”, in which 11 neighbouring tangent point heights are grouped into a batch

which shares the same 2D slice. In the 11-batch approach, rays in each batch are assumed to share the same tangent point

horizontal position which is the 6th point of the 11 tangent points within the batch. The ECMWF’s operational system uses the

11-batch approach to assimilate bending angles.220

Profiles of ΦDP simulated with the three approaches handling the tangent-point drift are shown in Figure 3. As we can expect

from the insensitivity of simulated ΦDP with respect to the horizontal displacement in AR cases, the different approaches yield

ΦDP that are equally consistent with the observations. In contrast, in TC cases, simulated ΦDP profiles are highly dependent

on how the tangent-point drift is handled. Contrary to a naive expectation, however, the “full-drift” approach, which is the most

expensive but should be the most accurate, does not necessarily result in simulations most consistent with the observations.225

This is likely because the overall error is dominated by the errors that result from displacement error and thus the impact from

refining tangent-point drift is obscured.
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Figure 2. Uncertainty of simulated total ΦDP (purple) and their contributions from resolved-scale snow (SWC; teal) and parametrised

convective snow (SWCconv; pale blue), computed for each of the AR cases (top two rows) and each of the TC cases (bottom two rows).

Here, the uncertainty is estimated by shifting or not shifting the latitude and longitude of the tangent points by ±0.1o. This results in

computing 3× 3 = 9 profiles in total, and the range between the minimum and maximum of such nine profiles are shown with shades. The

unperturbed profiles are shown with solid lines.
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Figure 3. Impact of different approaches to account for tangent-point drifts. Profiles of ΦDP simulated with the three different ways to handle

the tangent-point drift (see text for detail) are plotted for each of the AR cases (top two rows) and each of the TC cases (bottom two rows),

along with the observed ΦDP.
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4.4 1D operator

Most global NWP centres rely on a one-dimeinsional (1D) forward operator in simulating and assimilating RO bending angles.

A 1D forward operator computes bending angle observable by only using the atmospheric profile at the tangent point, assuming230

that atmospheric thermodynamic fields within the occultation slice can be regarded horizontally uniform and hence an identical

atmospheric profile can be used for all the columns in the 2D slice. It is thus interesting to see how a 1D operator would perform

in simulating PRO observable ΦDP. Such an assessment will also clarify how essential 2D ray-tracing is in simulating realistic

ΦDP.

Our 2D operator can easily operate in “1D mode” to emulate a 1D operator. To do this, we just set the derivative of the235

horizontal ray position to zero when integrating the ray equation (which is equivalent to assuming zero horizontal gradient of

refractivity within the 2D slice). For simplicity, the tangent-point drift is ignored in our 1D computation.

The results of 1D computation are summarised in Figure 4. Unlike the 2D results (Figure 1), simulated ΦDP are highly

inconsistent with the observed ΦDP even for the AR cases. The extreme case is the Hurricane Larry (centre panel in the

bottom-most row) in which the simulated ΦDP is almost zero except very near to the surface.240

To understand why, cross-sections of resolved-scale snow water content (SWC), which is the dominant contributer to KDP,

are informative (Figure 5). In any of the cases, the distribution of SWC is far from being horizontally uniform, violating the

assumption of the 1D computation. In the case of Hurricane Larry, the tangent point just happens to be inside the eye where

there is no cloud and hydrometeors at all, so that 1D computation using only the profile at the tangent point completely misses

out the hydrometeors in its vicinity.245

The poor fit of the simulated and observed ΦDP highlights the importance of the capacity to perform 2D computation in

accurately simulating ΦDP observable.

5 Summary and discussion

A forward operator for GNSS-PRO observable ΦDP has been implemented by extending the existing 2D forward operator for

GNSS-RO bending angle observations assuming a linear relation between hydrometeor water content and KDP. The imple-250

mented forward operator has been tested with five atmospheric river (AR) cases and six tropical cyclone (TC) cases which

all accompanied heavy precipitation and strong ΦDP signals in the actual observations. Despite all the simplifications, the

implemented forward operator is found to be able to produce simulated ΦDP profiles that are remarkably consistent with the

corresponding observed profiles in most of the AR cases. In contrast to the success with AR cases, however, TC cases are

found to be much more challenging, with simulated ΦDP systematically overestimating the observed ΦDP.255

Several additional ΦDP simulations have been conducted with varying configurations of the implemented operator to under-

stand its capacity and limitation. In this section we highlight and discuss the following main findings from this study.
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Figure 4. As in Figure 1, but with the profiles simulated with 1-dimensional computation.
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Figure 5. Resolved-scale snow water content in g m−3 along the rays.
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5.1 Why snow dominates?

From the results in Figure 1 it was found that simulated ΦDP is dominated by contribution from snow particles. This does

not immediately mean that ΦDP (or KDP) is dominated by snow in reality because our modelled KDP-water-content relation260

involves multiple uncertain assumptions and the hydrometeor representation in the IFS model is also subject to forecast un-

certainties. Nevertheless, the remarkable agreement between the observed and simulated ΦDP in AR cases suggests that the

dominance of snow contributions to ΦDP is likely realistic.

This finding is in line with previous findings by Turk et al. (2021) and Padullés et al. (2021) who simulated ΦDP profiles

observed by PAZ using liquid and solid water content retrieval from collocated cloud-sensitive measurements from other265

satellites. They found that liquid phase hydrometeor alone cannot explain the observed ΦDP values, especially at high tangent

point heights above freezing level. It appears, nevertheless, that liquid hydrometeor contributions to ΦDP being negligible in

comparison to snow has not been reported before.

In weather radar community, it is widely accepted that KDP per mass of snow particles is an order of magnitude smaller

than that of liquid rain (Doviak and Zrnić, 1993) so that snow is largely undetectable from KDP measurements (e.g., Kumjian,270

2013). Because of this, most forward operators that have been developed to simulate or assimilate radar KDP observations

only consider warm rain conditions (e.g., Li and Mecikalski, 2013; Yokota et al., 2016; Kawabata et al., 2018a, b). From this

perspective, it is surprising that PRO measurement likely senses predominantly the presence of snow rather than rain.

The geometry of GNSS-PRO may be a factor contributing to the high sensitivity of ΦDP with respect to snow since the rays

travel long distances at high altitudes except in the very vicinity of the tangent points.275

Another factor that may explain this apparent contradiction would be the difference in carrier wave frequencies of GNSS

and weather radars. In GNSS, the L-band is chosen as the carrier frequencies since radio waves at these frequencies are less

prone to attenuation by hydrometeors, thus allowing for signals to propagate in all sky condition. In the L-band, the frequency

is ∼ 1.4 GHz, corresponding to the wavelength of λ≈ 20 cm. In contrast, in weather radars, the carrier frequency of C- to

X-band is typically chosen to maximise backscatter from hydrometeors, with a much shorter wavelength of λ = 3∼ 5 cm.280

The longer wavelength of GNSS carrier waves makes the phase measurement more sensitive to the overall bulk properties of

the hydrometeor particles than to their detailed shapes (Turk et al., 2021), whereby making KDP at these frequencies more

sensitive to snow particles than at lower frequencies, which may justify the simple linear KDP/WC relation.

5.2 Sensitivity to displacement

In section 4.2 we saw that the poor O-B fit for tropical cyclone (TC) cases is partly due to the high sensitivity of ΦDP to the285

displacement of clouds. Even a small shift in the latitude and longitude of only 0.1 degrees, which is equivalent to around 10

km (just one grid point of the deterministic high-resolution model), can lead to completely different simulations for TC cases.

While this is helpful as it may inform the model about its incorrect TC positions through observations, it poses a methodological

challenge for the data assimilation system.
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Consider, for example, a scenario where the observed ΦDP is greater than the background ΦDP due to the misplaced TC290

position. In such a situation, positive O-B departures can be “corrected” in many different ways, such as locally increasing snow

along the ray (which would be a wrong correction), changing the refractivity or temperature so that the ray passes through areas

of intense snow (also a wrong correction), or shifting the position of the TC in the background fields (which would be the right

correction). Out of these many possibilities, the data assimilation method needs to correct the background fields in the right

way, but given the sparsity of GNSS-PRO observations, it is not obvious whether the information content provided by such295

observations is rich enough to constrain the correction in the right direction.

Apart from the sparsity of observations, correcting displacement of the background fields is also difficult because it is known

to induce non-Gaussianity in the probability distribution of the background errors (e.g., Chen and Snyder, 2007; Aonashi et al.,

2011).

5.3 Overestimation of ΦDP in TC cases300

In this study, we have assumed a linear relation between KDP and hydrometeor water content variables as we discussed in

section 2.2. Despite such a simple assumption, our forward operator achieves remarkably good simulations for AR cases. Yet,

the simulated ΦDP are systematically overestimated for TC cases, which deserves to be explored.

In our forward operator we assumed that the axis ratio ar is constant at the arbitrarily chosen value of 0.5. While this choice

resulted in ΦDP simulations that are in remarkably good agreement with the observations in AR cases, its validity may need305

to be reconsidered for TC cases. There are several observational evidence that ar should be larger (i.e., snow particles should

be less horizontally oriented) in deep convective clouds than in stratiform clouds because strong turbulent mixing inside deep

convection randomises particle orientation (e.g., Gong and Wu, 2017). It may thus worth to allow ar in our formulation to vary

depending on the strength of mixing or vertical velocity of the background fields (Dr. Padullés, private communication).

5.4 Importance of 2D ray tracing310

We found that, unlike the successful ΦDP simulations with the 2D operator, the 1D operator fails to reproduce the observed

ΦDP even for AR cases where the 2D operator performs very well, which underlines the importance of incorporating the 2D

aspect in ray tracing calculation. This is in contrast to the case of regular GNSS-RO bending angle assimilation where a 1D

operator is considered to be accurate enough to allow for extraction of meaningful information content from observations,

although additional benefit is demonstrated with a 2D operator.315

At the moment ECMWF is the only operational NWP centre to perform 2D ray tracing in assimilating GNSS-RO obser-

vations operationally. Our results suggest that, when other centres start investigation on GNSS-PRO assimilation, they would

need to start by first extending their RO forward operator to adopt 2D ray tracing. Depending on how the code is parallelised,

this alone can be a non-trivial work.
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5.5 Future directions320

This study investigated characteristics of our implementation of a forward operator for GNSS-PRO observable ΦDP. To the

authors’ knowledge, this is the first ΦDP forward operator ever implemented for an NWP model. While our first implementation

demonstrated promising results, especially for the synoptic-scale Atmospheric River (AR) cases, the results also identified

several challenges that warrant further investigations.

The key challenge in assimilating PRO observations would be to account for displacement error of the background and this325

will be particularly important for smaller-scale phenomena such as tropical cyclones. While the currently operational 4DVar

is known to be able to correct position errors in the background by assimilating dense observations like all-sky microwave

radiances (e.g. Duncan et al., 2022), it is not clear if such a correction is possible with horizontally sparse observations like

GNSS-PRO and further methodological development along this line might be needed.

The linear relation between KDP and hydrometeor contents that we adopted is found to be quite successful despite its330

simplicity, but its limitations have also been identified. To better account for a wider range of weather situations, it would be

worth exploring a more elaborate KDP/WC relation. To this end, integration with RTTOV-SCATT would be beneficial because

that allows the assumptions on microphysical properties like particle size distribution to be more consistent across different

components of the NWP system.

In this study we focused on simulating the polarimetric differential phase shift ΦDP as the observable of GNSS-PRO,335

but ΦDP is not the only GNSS-PRO observable. Wang et al. (2021) introduced polarimetric bending angle as an alternative

observable quantity, and showed that polarimetric bending angle can be less prone to issues with multi-path, which may be

beneficial especially for measurements at low altitude. It would thus worthwhile to also explore building forward operator for

polarimetric bending angle.

Code and data availability. The PAZ data are available for download from https://paz.ice.csic.es/ upon registration. Some additional meta-340

data for PAZ data were retrieved from UCAR-processed level-2 data, which are publicly available from

https://data.cosmic.ucar.edu/gnss-ro/paz/postProc/level2/ (doi: 10.5065/k9vg-t494). The forecast data were produced with ECMWF’s IFS

Cy47R3 suite. We made the IFS forecast data used in this study available for download at doi:10.21957/hrkg-9c18. The forward operator for

PRO observations developed in this study is based on the ROPP code which is available free of charge from https://www.romsaf.org/ropp/

after agreeing to license conditions and completing user registration. We plan to put the PRO code into the ROPP package in a later re-345

lease, but the code is still under development. Every detail necessary to reproduce the PRO code is documented in section 2. To convert

hydrometeor vertical mass fluxes to water content variables, we used code from RTTOV-SCATT which can be obtained at https://nwp-

saf.eumetsat.int/site/software/rttov/ after agreeing to license conditions and completing user registration.
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